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A new kinetic equation is developed which incorporates the desirable features 
of the Enskog, the Rice-Allnatt, and the Prigogine-Nicolis-Misguich 
kinetic theories of dense fluids. Advantages of the present theory over the 
latter three theories are (1) it yields the correct local equilibrium hydrodynamic 
equations, (2) unlike the Rice-Allnatt theory, it determines the singlet and 
doublet distribution functions from the same equation, and (3) unlike the 
Prigogine-Nicolis-Misguich theory, it predicts the kinetic and kinetic- 
potential transport coefficients. The kinetic equation is solved by the 
Chapman-Enskog method and the coefficients of shear viscosity, bulk 
viscosity, thermal conductivity, and self-diffusion are obtained. The predicted 
bulk viscosity and thermal conductivity coefficients are singular at the 
critical point, while the shear viscosity and self-diffusion coefficients are not. 

KEY W O R D S  = Kinetic theory;  t ransport  propert ies of dense fluid. 

1. T H E  K I N E T I C  E Q U A T I O N  

Several years ago Rice and Allnatt  I1) (RA) developed a promising kinetic 
theory o f  liquids based on the following idea: A molecule moving th rough  a 
dense fluid will undergo a mot ion  in which it experiences a "Brownian"  
mot ion  through the average potential field o f  the neighboring molecules with 
intermittent binary, hard-core-like collisions occurring when the molecule 
moves within the strongly repulsive force field o f  a neighboring molecule. 
More  recently Prigogine, Nicolis, and Misguich (PNM) (2-~ presented a local 
equilibrium model  which follows the Rice-Allnat t  decomposi t ion o f  the 
mot ion  into hard-sphere binary collisions plus continuous field interactions. 

1 Departments of Chemical Engineering and Chemistry, University of Minnesota, Minnea- 
polis, Minnesota. 
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The PNM model neglects distortion of the singlet distribution function from 
local equilibrium and, consequently, cannot be used for prediction of diffu- 
sional transport properties. However, for thermal conductivity and viscosity 
the PNM theory is as good as or better than the RA theory in the low- 
temperature, high-density region where neglect of the singlet distortions is 
reasonable. (4) 

The RA theory has the shortcomings that two different kinetic equations 
must be solved for the singlet and doublet distribution functions, respectively, 
and that the RA kinetic equations generate incorrect lowest-order hydro- 
dynamic equations. The PNM theory also does not generate the correct 
lowest-order hydrodynamic equations and, furthermore, neglects diffusional 
phenomena and the kinetic contributions to the transport coefficients by 
neglecting the distortion of the singlet distribution function from local 
equilibrium. 

What we wish to do in this paper is develop a theory which incorporates 
the desirable features of the RA and PNM theories, eliminates the short- 
comings mentioned above, and, not least by any means, takes as a starting 
point a very simple kinetic equation. 

We shall consider a system of N identical structureless particles inter- 
acting with pairwise additive, centrally symmetric forces. The pair potential 
will be decomposed as follows: 

V(r) = V I V )  + V~(r) 

VH(r) = o, r >~ ,, (1) 

VS(r) = O, r ~< cr 

V H denotes the strongly repulsive, short-range part of the potential energy 
and V s the softer, longer-range part. The hierarchy equation obeyed by the 
singlet distribution function f(x, vl,  t) for particle 1 of the system is 

O~f+ vz" Vl f  = +(l/m) f ~71V(x12 ) " O~f2(x~, x2, vl., v2, t) dx2 dr2 

= (oof/et) ~ + O/m) f v~V~(x~) �9 ~A(x~,  x~, v~, v~t) dx~ dv~ 
(2) 

where 

(aof /et)  n = (l/m) f V1Vn(x12)'azfz(xl ,  x2 , v z ,  v2, t) dx2 dv~ (3) 

~ =- ~/~t (4) 

Vi = ~/~x~ (5) 

Oi = ~/~vi (6) 

f2is the doublet distribution function, and xz~ = xz -- x2. 
Equation (2) is a continuity equation for f. The terms on the rhs of (2) 

represent the rate of change o f f  due to collisions of particle 1 with the back- 
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ground particles. The first assumption of our model is that the contribution 
from the strongly repulsive interactions ( ~ f / O t )  H can be approximated by 
the binary hard-core collision operator. Thus, we have a s s u m p t i o n  o n e :  

( a ~ f / a t ) ~  _ ~2 ~ [f2(xz, xz + ~k, v~', v~', t) 
av 21"k>O 

-- f2(x~, Xl -- ~k, vz, v2, t)] v21 " k dk dv~ (7) 

k is a unit vector directed from the center of molecule 2 to the center of  
molecule 1, dk is the incremental solid angle associated with k, and Vl' and 
v( are the resulting velocities of a pair of molecules with initial velocities 
v~ and v2 which undergo a hard-sphere collision. Note that we do not make the 
chaos assumption of Enskog (5) that f2 can be factorized into the product of 
the singlet distribution functions and the local equilibrium radial distribution 
function. Although we shall not do so in any computations presented here, 
the fact that V R is not the hard-sphere potential for real systems can be 
compensated for by assuming the cutoff diameter ~ to be temperature- 
dependent. This is done with a good deal of success, for example, in the 
scaled particle theory of equilibrium properties of liquids/s) 

To obtain a solvable equation for f ,  we must relate f2 to f .  The so-called 
"master equations" give a formal solution to this problem by relating f2 
to the initial correlations in the system and to f through a nonlinear, non- 
Markovian collision operator. In an important paper evolved from the 
"Brussels school," Severne 17) has shown that in the transport or long-time 
limit the contribution of the initial correlations decay to zero for fluids with 
initial correlations of finite range, so that .f~ (and fn for that matter) is a 
functional o f f  

At this point it is useful to introduce the doublet correlation function 
g2 defined by the expression 

gz(xl, x2  , v l  , v2 , t )  = f 2 ( x z  , x.z , v l  , v2 , t )  - -  f ( x l  , v~, t)f(x2, v~, t) (8) 

and its Fourier transform 

g2(I ,  v l  , v~ ; x z  , t )  

(1/8~r ~) f dx2z [exp(il �9 x21)] g2(xl, xt + x~l, vl ,  v2, t) (9) 

To lowest order in the interaction potential (i.e., to the weak coupling 
approximation), Severne's exact long-time form for g~ is 

g2(l, vl ,  v~ ," x l ,  t) = --ml dx~ ~(x~ -- x2) exp --iV~ �9 ~ -  

1 
x 

| " V 1 2  - -  i ( V  1 " V 1 -~- v~ �9 7 2 )  - -  i ~ t  - -  iO 

• v~l. e~.~f(x~, vl ,  t ) f (x~ ,  v~, t) (10) 
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where 012 = al -- a2 and Vz is the Fourier transform of V(x12) defined by 
the relation 

V~ = (1/8~r) f dr [exp(--il �9 r)] V(r) (11) 

and where the abbreviation 

i~r 8(A) + ~(1/A) -- 1/(A --  i0) (12) 

with A = 1 �9 vl~ -- i(vz " V1 ~- v~ �9 V2) -- i~,, has been used. Here 8 is the 
Dirac delta function operator and ~ is the principal part operator. The 
operators vi �9 V~ and iO~ in A arise, respectively, from the time evolution of 
spatial delocalization and from the time evolution (memory) of the distri- 
bution functions of colliding particles. These "temporal" effects contribute 
to the nondissipative part of the hydrodynamic equations as well as to 
the transport fluxes. Dowling and Davis (s,9) have presented a detailed 
study of the temporal contributions in the weak coupling kinetic 
equation. 

Severne's full result for g2 involves a complicated operator expansion in 
powers of the interaction potential V. The integrand of Eq. (10) is the first 
term of the expansion. According to the diagram theory of Prigogine and 
co-workers, one tries to pick out a dominant and tractable class of terms 
from the exact expansion of g2 �9 The PNM theory, to be discussed in a later 
section, is based on summing a certain infinite class of terms which, when the 
f ' s  are approximated by their local equilibrium values, leads to a result of 
the same basic form as Eq. (10) but with V, replaced by a combination of the 
local equilibrium radial distribution functions. Thus, roughly speaking, the 
effect of the many-body interactions in the fluid is to replace the bare two- 
body potential in Eq. (10) by an effective many-body potential. On the other 
hand, one obtains immediately the RA result if, in Eq. (10), (1) the spatial 
and temporal delocalization operators are neglected, i.e., 

exp(--iV 2 �9 ~/~i) ~ 1 and A ~__ 1 �9 vlz -- i0 

and (2) V~ is replaced by the effective potential - - k T G ~ ,  where G~ is the 
Fourier transform of g(r)  - -  1, g(r)  being the local equilibrium radial distri- 
bution function. The resulting g2, combined with Eqs. (2) and (7), gives the 
RA singlet kinetic equation. 

What we propose to do now is introduce an ansatz, motivated by the 
experience of the RA and PNM theories, that incorporates the basic features 
of these theories and eliminates some of their shortcomings discussed above. 
Accordingly, our second and last approximation is assumption two: 
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The transport doublet distribution function is of the form 

g2(l, v~, v2 ; x l ,  t) = (l/m) f dx~ ~(xl -- x2) exp(--iV2 �9 0/~1) 

• {1/[1 "v12 -- i(vl" V1 + v2" V2) -- iO~ -- i0]} 

• V~((xl + x2)/2, t]l- d1~f(x~, vl ,  t ) f (x2 ,  v~, t) 
(13) 

where F,((x~ -}- x2)/2, t) is an effective potential chosen to satisfy the following 
conditions: 

(1) Equation (13) is exact in the weak coupling limit (i.e., V~ reduces 
to V, to first order in V). 

(2) Equation (13) is exact in the equilibrium limit. 

113) Equation (13), when inserted in the kinetic equation (2), leads to the 
exact nondissipative hydrodynamic equations which occur in the 
Chapman-Enskog solution of the kinetic equation. 

The choice of Fz that satisfies these three conditions is 

Zz = --kT((xa + x~)/2, t)G~((x~ + x~)/2, t) 

where 

G~ = (1/87r 3) ( dr [exp(--il �9 r)][g(r) -- 1] 
d 

(14) 

05) 

T((xl 4- x2)/2, t) is the kinetic temperature evaluated at the center of mass of 
the colliding particles and g(r) is the equilibrium radial distribution function 
evaluated for the density and kinetic temperature at the center of mass 
of the colliding particles. This choice of Vz also has the advantages that in the 
limit that the f ' s  have their local equilibrium values, Eq. (13) is very similar 
to the PNM result for g~ and in the limit that spatial and time delocalizations 
in the integrand of Eq. (13) are neglected, the RA kinetic equation results as 
well as Enskog's original hard-sphere kinetic equation when V s ~- 0. Because 
of the neglect of the spatial and time delocalizations in Eq. (13), the RA theory 
does not satisfy condition 3 and one has to go to a Schmoluchowski equation 
to calculate part of the transport coefficients. 

Thus, in summary, our basic kinetic equation is 

~t f  + vl " V l f  -}- m-lFS(xl, t ) - ~ z f  

= ~ ~ [A(x~, x~ + ok, v(,  v( ,  t) 
Jv ~k>O 

-- f2(xl,  xz -- ~k, vl ,  v~, t)] v2a " k dk dr2 

V~sl " ~lg~(l, vz, v2 ; x~, t) i(8~3/m) dl dv2 
d 
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= c r2 f [ f ( x l ,  vz', t ) f ( x l  + •k, v2', t) 
av 2z'k>o 

- -  f ( x l ,  v l ,  t ) f (x~ --  crk, v2, t)] v~l" k dk dv2 

fv ! t. + ~2 {[exp(--il  �9 kcr)] gz(l, v l ,  v2, X 1 , t) 
21"k>O 

- -  [ exp(+ i l  �9 kcO] g20, v l ,  v2 ; x l ,  t)} v21" k dk  dr2 dl 

-- i(87ra/m) f V~Sl �9 81g~(1, vz, v2 ; x~, t) dr2 dl (16) 

where FS(xz, t) is the Vlasov force 

FzS(xl, t) = Vz" f VS(x12)f(x2, v2, t) dx 2 dv2 (17) 

and g2(i, v l ,  v~ ; x 1 , t) is given by Eq. (13). The generalization o f  Eq. (16) 
to mul t icomponent  systems is immediately obvious and, perhaps more  
importantly,  the generalization to include the rotat ional  degrees of  f reedom 
of  polyatomic systems. These generalizations are currently being studied. 

2. C H A P M A N - E N S K O G  S O L U T I O N  T O  K I N E T I C  
E Q U A T I O N  

Since we are interested only in linear t ransport  phenomena  here, it is 
useful to expand the spatial and time operators in the integrand of  Eq. (13) 
and keep terms only through first order  in Vi and 0t ,  i.e., 

exp(- - iV 2 �9 O/Ol) = 1 --  iV 2 �9 O/al + ... (18) 

1 

1 " v12 - -  i(vx " V l  -~  v2 " V2 + 0t) - -  iO 

1 i (v  1 �9 Vz  + v 2 �9 V~ + ct)  
- -  l "  V12 - -  i ~  + (1"  V12 - -  i 0 )  2 @- "'" (19) 

To  first order,  then, we have 

gz(l, v l ,  v~ ; x l ,  t) = g~l) @ g(92) + g~3) @ g~a) (20) 

where 

g~l) = m - l V z ( X l  , t )  
l : ~ i 6  l ' O l ~ f ( x l , v l , t ) f ( x l , v 2 , t )  

i r a ~((x~ + x~)/2, t) 
g(2m --  m J dx2 8(xz - -  x2) v2 �9 01 1.  vz2 - i0 1 

�9 ~z2f(xl ,  v l ,  t ) f ( x 2 ,  v2, t) 

(21) 

(22) 
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g~) __ i V~(xl, t) 
- -  m at (1 " ~ n  --  iO) 2 l "  812f(xl ,  vz, t ) f ( x l ,  v2, t) 

�9 (xl  
o2~(4) = / m  dx~ 8(x, -- x2) ( i : ~ 2  --?O)-g F~ 2 

�9 Ozzf(xl , x , ,  t ) f ( x 2 ,  v2, t) 

- - , t )  l 

(23) 

(24) 

The term g~2) arises f rom the spatial delocalization o f  colliding particles, 
g~2) f rom the memory  or time dependence of  the distribution functions during 
a collision, and g~4) f rom the evolution of  spatial delocalization during a 
collision. 

We shall also introduce in the Boltzmann-like term in Eq. (16) the 
expansion 

f ( x  I :~ crk, v~, t) = / ( x l ,  v2, t) :~: ~k " VI/(X1,  v2, t) @ "'" (25) 

Int roducing the notations 

Jm = ~2 [ f (x l  , v l ,  t ) / ( x l  , v2, t) 
21"k>O 

- - f ( x l ,  vz, t ) f ( x l ,  v2, t)] Va" k dk dv~ (26) 

/ ,  

= | ' v '  t) J~2 ~a k "  [ / ( x l ,  v l ,  t) V f f (xz ,  ~, 
av ~l'k>O 

--  f ( x l ,  v , ,  t) V l f ( x  1 , v2, t)] v~ �9 k dk dr2 (27) 

j(g~i)) = ~ f, {[exp(--il  �9 ka)] g(i)(l, vl', v~', xx,  t) 
21"k>0 

- -  [exp(il �9 kcO] g~)(l, v , ,  v 2 ; xz ,  t)} v21 " k dk dv 2 dl (28) 

--i(8rra/m) f V~Sl �9 81 gz(i)(l, v 1 , v 2 ; x 1 , t) d% dl (29) 

we obtain the following form for  the kinetic equat ion appropriate  for  the 
computa t ion  of  linear t ransport  properties: 

4 4 

e t f  + vl"  V l f +  m-WS(xz,  t) " 81f = J~l + JB2 + Z j(g~i)) @ Z ~(g~i)) 
i=1 i=Z 

(3o) 
Equat ion (30) is still nonl inear  in the singlet distribution funct ion f 

Linearizing by the Chapman-Enskog  method,  (5) we obtain 

h( f  ~ = 6gn~ + 6gs~ (31) 
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with 

h(/O) : a ofo + vl" VI/~ -}- rn-lFS~ t)" d~f ~ -- 3~ 
4 4 

-- 2 0 (i) J (g2)  -- Z ~O(g~i)) 
i=2 i=2 

(32) 

where 

#/r~4 = g(cr)cr~ j,~ck>of~176 -1- 4'(2) -- 4(1) -- 4(2)1 ve," k dk dr2 

--m-,krcrzs exp(--il "kc0 ~-: vz~-~---7~ 1" [01'4(1)' -- d2'4(2)'] 

exp(il �9 k(r) I 
1" ' - - ~  1. [~14(1) -- ~24(2)] Gzf~ v21" k dk dv~ dl 

g12 
(33) 

and 

~ 4  = -(s~/m~) kr ~ G~V?l. ~ ( l .  v~) f~ f~ l �9 01214(1) + 4(2) 1 
(34) 

where the superscript 0 on F s~ j o ,  jo(g~i~), and B~ means that in these 
expressions we have set f = - f o  and ~o denotes the zeroth-order time deri- 
vative of hydrodynamic variables. The quantity f~ = f~ 1 , vi, t) is the 
local equilibrium distribution function defined as 

f(i)O : Fl(Xl,t) [ D2 ]3/2 l m II(X1 t)]2I 
2~rkT(xl, t )  exp 2kT(xz, t) [vi -- , 

(35) 

The quantities 17, T, and u are the local density, temperature, and mass- 
average velocity, respectively. The quantity 4(0 represents the deviation o f f  
from local equilibrium and is defined by the relation, 

f(i) = f(i)~ + 4(0] (36) 

The operator 6g54 is identical to the Fokker-Planck part of the Rice- 
Allnatt collision operator, but ~H4 differs from the Enskog operator em- 
ployed in the Rice-Allnatt theory since we did not use the chaos assumption 
of Enskog. The added contribution to our hard-sphere collision operator is 
real since it does not vanish in the weak coupling limit, --kTG~ --~ V~, where 
our assumption two is exact. The contribution represents dynamic corre- 
lations neglected by Enskog's chaos assumption. PNM obtained similar 
contributions in their local equilibrium theory. 
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The operators ~H and C(s are symmetric and admit the solutions Ch = 
m, v, v 2 to the homogeneous equation 

~ r  + ~sr = 0 (37) 

Thus, the Fredholm solvability condition requires that the left-hand side of 
Eq. (31) must be orthogonal to m, v, v ~, i.e., the/hs of (31) when multiplied by 
m, vl ,  and vl ~, respectively, and integrated over dr1 must equal zero. Per- 
forming these integrations, we obtain the following solvability conditions: 

0t~ + V 1 " (nu) = 0 (38) 

~Ou -~- U " V i a  -t- (1/mn) VtP = 0 (39) 

e~~ @ u " V1T + (T/nCv)(OP/~T)~ V1 �9 u = 0 (40) 

These equations (which define the zeroth-order time derivative ~0) are the 
exact nondissipative hydrodynamic equations demanded by condition 3 of 
our model. If, as RA did, we neglect the contributions g~2), g~a), and g~4), the 
ideal specific heat is ~ID : ~k and the hard-sphere pressure p a  appear in 
these equations instead o f  the correct specific heat and pressure. The correct 
specific heat is obtained only if the memory and time displacement terms 
g~3) and g~4) are retained. The reason for this is that neglect of g~a) and 
g[4) is equivalent to assuming the collisions are instantaneous and, therefore, 
occur too quickly to allow kinetic energy to be stored as potential energy. 
Therefore, only the ideal heat capacity associated with the kinetic energy will 
be effective. 

Using Eqs. (38)-(41), one can eliminate the time derivatives O~~ e~~ 
and ~~  h(f~ However, it is not convenient to do this explicitly. In the 
calculations that follow, we evaluate integrals over dvz involving products of 
h ( f  ~ with certain functions of v~. It is generally easier to evaluate the 
integrals first and then eliminate ~~ 0t~ and ~~ from the results using 
Eqs. (38)-(41). 

On the basis of the kinetic theory of gases, it is expected that a good 
approximation to r is (Sa~ 

m e  2 D7 ] ) C �9 V~ In T 
2kT 

r 15 5mC 2 m2C 4 
@ 8(kT)------~] J Vz .u  (41) + b2 [ 8 4kT 

where C~ is a traceless dyadic, 

C~ = CC -- �89 (42) 
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and 

C = v -- u (43) 

and where the quantities bo, bz, and a~ are determined from the equations 

(44) 
fdvl[7 5mC'2 5m2C14 

4kT  -? 8(kT) ~ ]  

• i h ( S ~  b~(O[n + O/s)[~ 5mC2 
4kT + - -  

fdvlC~ (~ mC?2kr ) 
X l h ( f ~  alm(gT/u -t- O~s)(5_ _ _  

5m2C4 �9 u I 0 8(kT)2 "] V1 = 
(45) 

mC2) " 2 k T  V l l n T  I = 0  
(46) 

with u = 0 in Eq. (46). Performing the lengthy 
Eqs. (44)-(46) and eliminating ~,~ ~,~ and ~,~ from the results, we obtain 

integrations indicated in 

--5m [1 + 
b0 = 3(~p~)+ ~p~, + ~) 

m [ , +  

2(e s -k ps + pn) 7rn~3 

pH 

5nk T 5 

nkT  

q 
- -  G(,~)(1 - -  X3)J 

(47) 
4 ( ~ P ]  [ e s 3 

n ~  Cb-US~t n -~ -  + g) 

+ nkT12eS 7r~ nc~3G(cr)(X5 i-l- ~Xz)]7 (48) 

and 

5 [1 + 3 s ps sr = 4 ( ~ ) - ?  3 ~ ,  + ~s) ~ (e q- -F pr~) 

1 ( Oe s ~ 27rn~ 3 
+ 3 -~  t-bT-/e + ~ G(~)(8& -- 12~1 -- x3 -- 4)] (49) 

where 

~) = ~(zrmkTfl2 ne2g(~) 

~n = --(2zr/3)cr~G(~)n(mkT)ll2[(2tzcl/2) + 3X~ -- 2X4 ] (2) 

So ~s = _(16~r4/3) n(~rm/kT)~12 dl pVzSGz 

(5O) 

(51) 

(52) 
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p n  = (2w/3) hang(a) nkT (53) 

ps = --(27r/3) n 2 fo ~ dr rZ[dVS(r)/dr] G(r) (54) 

e s = 2rrn ~ f ?  dr r2VS(r) G(r) (55) 

~:., = - -  [ ( - -  1) ~ I./8rra/ZG(cr)] s  dx xG(r e.(x)  (56) 

L = f ay[exp(--y~)]  y"-Z (57) 

e . ( x )  = 16 f ~  ar~ [t ,"/(x ~ - 1 + t~)~/'q (58) 

X,~ -- - - ~  q- (2I./rra/'an) + [ ( - -1)"  I./8rra/2G(cr)] f[~ dx x2G(ex)[dP.(x)/gx] 
(59) 

The  quanti t ies  P.(x) can be evalua ted  explicitly. F o r  x ~> 0 the first five 
P,z are 

Pl(x) = - -  16[x - -  (x 2 - -  1)z/2] (60) 

P2(x) = 8x -- 4(x 2 - -  1) lnl(x + 1)/(x - -  1)[ (61) 

Pa(x) = - - 1 6 x  q- (32/3)[x a - -  (X ~ - -  1)a/21 (62) 

Pa(x) = 2x(5 - -  3x 2) -k 3(x 2 - -  1) ~ lnl(x -? 1)/(x - -  1)1 (63) 

Ps(x) = - - 1 6 x  q- (64/3)x a - -  (128/15)[x 5 - -  (x 2 - -  1) ~/2] (64) 

F o r  t racer  self-diffusion with VaT = u - 0, we can solve the kinet ic  
equa t ion  by sett ing 4(2 )  ~ 0 and  t ak ing  

4(1) = dv z �9 V, ln n* (65) 

where  n* is the t racer  e lement  concen t r a t i on  and  where  d is ob ta ined  f r o m  the 
equa t ion  

f dvz vl{h(f  ~ - -  d (~ t t*  q- 6gs*) v~" V~ In n*} = 0 (66) 

The  asterisk on 6gH* and  6gs* means  tha t  4(2) ~ 0 for  the self-diffusion case. 
The  result  is 

d = - - 1 / ( ~ ) +  ~(~) + ~s) (67) 

~'" = --(2~r/3) n~2G(cr)(mkr)~/2 X2 (68) (a) 
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Finally, the doublet distribution function, to first order in gradients of 
u and T, is of the form 

m_lkTG~ 4 
gz(1, vl ,  vz ; xl , t) -- 1 " v12 --  i0 1" 012{f(1)~176162 + r + ~ os~li'~ 

(69) 

where the superscript 0 on g~O indicates that we have s e t f  = fo in the expres- 
sions defining these quantities. 

3. T H E  T R A N S P O R T  F L U X E S  A N D  T R A N S P O R T  
C O E F F I C I E N T S  

The kinetic parts of the heat flux q and momentum flux J are by definition 

qK = �89 f f ( x l ,  v l ,  t)(v1 - -  U)2(V1 - -  U) dv 1 (70) 

and 

The 
collisions are 

q H = l m a a  ( (v21 ~ k) 2 kk"  (vl -} v2 -- 2u) 
~v 21-k>0 

• f2(xl ,  xl -- ~k, vl ,  v2, t) dk dvl dv2 

c 
JK = m if(x1, v l ,  t)(vl - -  u)(vl - -  u) dr1 (71) 

potential energy contributions to q and J from binary hard-sphere 

and 

JvH ~--- �89 fv (V21" k)2 kkfz(xl' Xl -- ak, v l ,  v2, t) dk dv 1 dv  2 
2Fk>O 

(72) 

(73) 

The potential energy contributions from the soft part of the potential energy 
are m) 

1 ( v~ .[1 vs(r) ---Si--JavS(r) 1 %s = J (Vl + -- 2u) -- r 

• f2(xl ,  Xl + r ,  V l ,  V2, t )  dr dvl dv2 

(74) 

1 f aVS(r) ~'x Jv s = - -  ~ r ~ ' - J 2 (  1 ,  Xl + r ,  v I v 2 ,  t )  dr dr1 dv2 

- -  2 f r dr + 4~r3 f (@(IV~S) g2(l, v l ,vz;xl , t )dldvld% 
(75) 
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The term involving f (xz ,  Vl, t ) f (xz + r, v~, t), obtained by setting f2 = 
g2 + f (1) f (2) ,  vanishes in Eq. (14) through first order in gradients of  n, 
u, and T and to the same order the corresponding term in Eq. (75) gives the 
contribution 

n 2 r OVS(r) n2 f r OVS(r) dr (76) 
2 f --~-r~-dr = --1-~- .~ ar 

Using the values off,  f2 ,  and & obtained in the preceding sections, we can 
compute the various contributions to q and J. Then, comparing the molecular 
expressions to Fourier's and Newton's laws, 

q = - - K  V T  (77 )  

and 

J = P1 -- ~Vz �9 ul -- ~7[Vzu + V~u r -- ~V~ �9 ul] (78) 

we obtain the various contributions to the thermal conductivity K, the shear 
viscosity ~7, and the bulk viscosity q~. The results are as follows. 

Thermal  Conductivity 

= K* [1 q- 3 ps  1 [ aeS~ 
~/~ (gp,) + 3gg) + ~9/~* ~ (e~ + + P~) + 3-7K ~ - ~ J ,  

2rma a 
+ ~ G(a)(S~a -- 12~71 -- Xa -- 4)] (79) 

2 3 7T 
~%H = ~x [5 ~rna g(cr) + ~ naaG(cr)(1 -~ 2Xa)] 

/128 2 [ g ( c r ) -  7rl/2 

32~r ( 7rrn ~1/= cq 
+2 ,krl \ - - m /  dp~/ 

t .~2 (5w1 + g/~ + (eS + 9ps) 2567r5 K* 9 Wa ) 
~%s _ 15nkT KK + ~ ( k T  

where 

and 

~:* = (75/64a~)(kaT/rrm)l/2 

~* =- 8na2@mkT)l/2/3 

(80) 

(81) 

(82) 

(83) 

822/7/3-4 
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Shear Viscosity 

r/* [ 2(e s + ps + pu)  

r 4~r a 2zr ncraG(cr)( 1 _ 3X~) ] 
~ "  = ~ [ q 3 -  n~ g(~) + 73- 

~vz/z 647r [g(cr) q- G(r 
+ --7-5- n ~ / *  - 4 -  X~ - - 

7rno ,3 
c(,~)(l - x~)] 

(84) 

.n-1/2 
~-- G(cr)(3~4 -- 8~:2)] (85) 

%s _ 2( es -- ps) 128 ~r~n2cr 2 
5nkT ~7~c + 75 k T  ~?*(2W~ q- Wa) 

where 
* = (5/16(rZ)(mkT/~r)~/~ 

(86) 

(87) 

Bulk Viscosity 

~6x = 0 (88) 

64zr ~ 6 *[g(cr)__ 6G(cO(~: 7~2)] CPv H = b2*zrneaG(~) rl* @ ~ n ~r ~1 

16[ 7r ]:/2~1, + ]3 ~-Uff t a 1 oP e 

• [Trn~r 1/~ ~2]} (89) 

9 . ,  ps * 128rr5 n2c~ rl* (8W2 + 4 W3 ) 

b 2 *  

512~1" 
15(kT) 1/~ 

0 q_ 1 OP ~ [ zrSn~ 2 

(9o) 

r pn 4 Z 0P \ z e s 3 
[I + - -  3C* bz = ~s ne~  [-g-f-).[n--k-f + 8) m ~(HX) q- ~ 1  + n k T  

-~ nk T 3 -8 

The quantities Wn are by definition 

W ,  = dl Gfl"(~'~-l/~l '~-1) V~ s (92) 

The other quantities in Eqs. (79)-(92) were defined in Eqs. (47)-(59). The 
total values of K, ~7, and r are, of course, obtained by summing the three 
parts given for each. 
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In the self-diffusion case, the diffusion flux is 

Jd = m j v l f  dvz = dkTVln*  

which, when compared to Fick's law, 

(93) 

gives fi)r the self-diffusion coefficient the result 

D = - - d k T  (95) 

Taking d from Eq. (67), we obtain 

k T  
D = ~1, + ~lr~, § ~s (96) 

The last terms in Eqs. (81) and (90) arise from the memory and temporal 
delocalization contributions g~a~o and g~4~0. These terms are singular, and 
hence of great importance, at the critical point. Also al contains a singular 
term arising from g~a~o and g~a~0. Thus, the neglect of the memory and time 
evolution of delocalization would have serious consequences, at least near 
the critical point. Using van Kampen's (lz~ approximation to G~ near the 
critical point, we can conclude from the above results that K and ~ are 
singular at the critical point, while ~/ and D are not. This is in qualitative 
agreement with experiment. However, whether the quantitative nature of the 
singularities predicted for K and q~ agree with experiment has not yet been 
established. Work on this point is underway at present. 

The terms in ~:, 7, g), and D involving the Xn and ~:n functions arise from 
the dynamic correlations mentioned earlier. If Enskog's chaos assumption 
were used in the hard-sphere contributions, these terms would not appear. 

Using the values for the radial distribution function computed for the 
superposition approximation by Kirkwood et aL (~a) for the truncated 
Lennard-Jones model, we have computed the self-diffusion coefficient for 
liquids argon, krypton, and xenon. The quantity ~(~ is much smaller than 
~ )  § !;s so that Eq. (96) gives essentially the same numerical results as the 
original Rice-Allnatt approximation, D = k T / ( ~ )  + ~s). In Table I, theory 
and experiment ~a) are compared. The theoretical values disagree with 
experiment by only 20% for temperatures below 0.9T~, where T~ is the 
critical temperature. For higher temperatures the disagreement becomes 
increasingly greater. Numerical predictions of the viscosity and the thermal 
conductivity have not been made presently, although in the dense fluid 
range they should be about 5-15% higher than the predictions of the PNM 
theory. The PNM theory predicts (a) the viscosity and thermal conductivity 

Ja = --DVln* (94) 
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Table I. Self-Diffusivity (in units of cm2/sec) of Liquids 
Argon, Krypton, and Xenon Along the Vapor Pressure 

Cu r y e  a 

Substance T, ~ D(calc) • 10 ~ D(obs) x 10 ~ 

Argon 90 3.3 2.4 
110 4.8 4.8 
130 6.9 7.3 
140 8.6 8.6 
148 11.5 9.8 

Krypton 120 2.5 1.7 
140 3.2 2.7 
160 4.3 3.7 
180 5.7 4.5 
200 8.2 5.6 

Xenon 220 3.8 4.4 
240 4.7 5.2 
260 6.0 6.0 
280 8.0 6.2 
285 9.2 6.2 

i 

, Theoretical predictions based on Eq. (96) and experimental 
values taken from Ref. 24. 

of  the inert  gas liquids with generally no more than  abou t  30 % error, usually 

low, so that  we can expect the present  theory to predict  these t ranspor t  

coefficients with no  more than  25 % error. 
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